8663A Specifications

Frequency

Range: 100 kHz to $2.56 \mathrm{GHz}(2.5599999996 \mathrm{GHz})$.
Resolution: 0.1 Hz for $\mathrm{f}_{\mathrm{c}}<640 \mathrm{MHz}$;
0.2 Hz for $640 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{c}}<1280 \mathrm{MHz}$;
0.4 Hz for $1280 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{c}}<2560 \mathrm{MHz}$.

Accuracy and stability: Same as reference oscillator.

Reference oscillator

Internal: 10 MHz quartz oscillator. Aging rate $<5 \times 10^{-10}$ /day after a 10 day warm-up.

Supplemental characteristics - frequency

Internal: Internal reference oscillator accuracy is a function of calibration, \pm aging rate, \pm temperature effects, \pm line voltage effects. Typical temperature and line voltage effects are $<3.5 \times 10^{-11} /{ }^{\circ} \mathrm{C}$ and $<1 \times 10^{-10} / \pm 10 \%$ line voltage change. Typical warm-up time is 24 hours.

External: Any 10 MHz ($\pm 0.005 \%$) frequency standard at a level of 0.5 to $0.7 V_{r m s}$ into 50 ohms (rear panel connector) or any 5 MHz ($\pm 0.005 \%$) frequency standard at a level of $1 V_{r m s} \pm 0.1 \mathrm{~V}$.

Reference output (source impedance 65 ohms):

 Reference signal (internal or external) available from rear panel connector at a level of $>0.5 V_{r m s}$ into 50 ohms. Output is always 10 MHz even with 5 MHz external reference frequency.Frequency switching speed ${ }^{5}$: Total switching time depends on the programming mode used. The 8663A RF settling time is 250 us to be within 1 kHz and 400μ s to be within 100 Hz . The table below gives typical total switching time to be within 100 Hz of final frequency for various programming modes. (All data for 11-digits of frequency change).

Programming mode	Microprocessor time	Settling time	Total switching time
String	12.1 ms	$400 \mu \mathrm{~s}$	12.5 ms
Character	8.3 ms	$400 \mu \mathrm{~s}$	8.7 ms
Remote sweep	In these modes, microprocessor Fast learn	time and RF time overlap.	5 s
Frequency hop	$130 \mu \mathrm{~s}$	$400 \mu \mathrm{~s}$	$530 \mu \mathrm{~s}$

Spectral purity

Front panel absolute SSB phase noise ($\mathrm{dBc} / \mathrm{Hz}$):

	Frequency range (MHz)											
	$\begin{aligned} & \hline 0.01 \\ & 119 \end{aligned}$		$\begin{aligned} & 120 \text { to } \\ & 159.9^{2} \end{aligned}$		$\begin{aligned} & \hline 160 \text { to } \\ & 319.92 \end{aligned}$		$\begin{aligned} & \hline 320 \text { to } \\ & 639.92 \end{aligned}$		$\begin{aligned} & \hline 640 \text { to } \\ & 1279.9^{3} \end{aligned}$		$\begin{aligned} & 1280 \text { to } \\ & 2559.9^{4} \end{aligned}$	
	Spec	typ										
1 Hz	-68	-78	-66	-76	-60	-70	-54	-64	-48	-58	-42	52
10 Hz	98	-108	-96	-106	-90	-100	-84	94	-78	88	-72	82
100 Hz	116	-126	- 115	-125	-109	-119	-103	-114	-97	-108	-92	-102
1 kHz	-126	-132	-129	-135	-124	-130	-118	-125	-112	-119	-106	-113
3 kHz	-126	-135	-129	-138	-124	-133	-118	-127	-112	-121	-106	-115
5 kHz	-128	-138	-131	-141	-126	-136	- 120	-130	-114	-124	-108	-118
10 kHz	-132	-138	- 142	-148	-136	-142	-131	-136	-124	-130	-118	-124
100 NLz	-132	-139	-142	-148	-136	-142	-131	-136	-124	-130	-118	-124

Residual SSB phase noise ($\mathrm{dBc} / \mathrm{Hz}$):

	Frequency range (MHz)											
	$\begin{array}{\|l} \hline 0.01 \text { to } \\ 119.91 \end{array}$		$\begin{aligned} & \hline 120 \text { to } \\ & 159.9^{2} \end{aligned}$		$\begin{aligned} & 160 \text { to } \\ & 319.9^{2} \end{aligned}$		$\begin{aligned} & \hline 320 \text { to } \\ & 639.9^{2} \end{aligned}$		$\begin{aligned} & \hline 640 \text { to } \\ & 1279.9^{3} \end{aligned}$		$\begin{aligned} & 1280 \text { to } \\ & 2559.94 \end{aligned}$	
	Spec	typ										
10 Hz	108	-114	-112	-119	-106	113	100	107	-93	101	88	95
100 Hz	121	-126	-122	-129	-118	-124	-112	-119	-105	112	100	-106
kHz	128	-133	-131	-138	-127	-134	12	-128	-115	122	109	-116
kHz	128	-136	-131	-139	-127	-135	-121	-129	-115	123	109	117
5 kHz	129	138	-133	-141	-129	-136	-123	-130	-117	124	111	118
10 kHz	132	-137	-142	-147	-136	-142	-131	136	-124	130	118	124
000 kt	132	137	142	-147	-136	142	-131	136	-124	130	118	124

[^0]
8663A Specifications

Spurious signals, CW, AM and FM modes:

	Carrier frequency range (MHz)					
Spurious signals	$\begin{aligned} & 0.1 \text { to } \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \text { to } \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & 160 \text { to } \\ & 320 \\ & \hline \end{aligned}$	$\begin{aligned} & 320 \text { to } \\ & 640 \\ & \hline \end{aligned}$	$\begin{aligned} & 640 \text { to } \\ & 1280 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 1280 \text { to } \\ 2560 \\ \hline \end{array}$
Spurious non-harmonically related. ${ }^{2}$	$\begin{aligned} & <-90 \\ & \mathrm{dBc} \end{aligned}$	$\begin{aligned} & <-100 \\ & \mathrm{dBc} \end{aligned}$	$\begin{aligned} & <-96 \\ & \mathrm{dBc} \end{aligned}$	$\begin{aligned} & <-90 \\ & d B c \end{aligned}$	$\begin{aligned} & <-84 \\ & \mathrm{dBc} \end{aligned}$	$\begin{aligned} & <-78 \\ & \mathrm{dBc} \end{aligned}$
Sub-harmonically related ($\mathrm{f} / 2,3 \mathrm{f} / 2$, etc.).	none	none	none	none	$\begin{aligned} & <-70 \\ & \mathrm{dBc} \end{aligned}$	$\begin{aligned} & <-40 \\ & \mathrm{dBc} \end{aligned}$
Power line (60 Hz) related or microphonically generated (within 300 Hz). ${ }^{3}$	$\begin{aligned} & <-90 \\ & \mathrm{dBc} \end{aligned}$	$\begin{aligned} & <-85 \\ & \mathrm{dBc} \end{aligned}$	$\begin{aligned} & <-80 \\ & \mathrm{dBc} \end{aligned}$	$\begin{aligned} & <-75 \\ & \mathrm{dBc} \end{aligned}$	$\begin{aligned} & <-70 \\ & \mathrm{dBc} \end{aligned}$	$\begin{aligned} & <-65 \\ & \mathrm{dBc} \end{aligned}$
Harmonics	$<-30 \mathrm{dBc}, \leq+13 \mathrm{dBm}$ output $<-25 \mathrm{dBc},+13 \mathrm{dBm}$ to +16 dBm output					$\begin{gathered} <-25 \\ \mathrm{dBc} \end{gathered}$

Spectral purity options
Option 003 specified SSB phase noise for rear panel 640 MHz output

	spec	typ
$\mathbf{1 ~ H z}$	-54	-64
$\mathbf{1 0 ~ H z}$	-84	-94
$\mathbf{1 0 0 ~ H z}$	-104	-114
$\mathbf{1} \mathbf{~ k H z}$	-121	-126

	spec	typ
$\mathbf{3} \mathbf{~ k H z}$	-121	-127
$\mathbf{5} \mathbf{k H z}$	-129	-138
$\mathbf{1 0} \mathbf{k H z}$	-145	-149
$\mathbf{1 0 0} \mathbf{~ k H z}$	-157	-159

Special Option H40 - enhanced absolute SSB phase noise specifications in 1 Hz BW :

\left.| | Frequency range (MHz) | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| | Front Panel | | | | | | |
| Offset | 0.01 | 120 | 160 | 320 | 640 | 1280 | |
| Rear Panel | | | | | | | |
| from | to | to | to | to | to | to | |$\right) 640$

2 In the remote mode it is possible to have microprocessor clock related spurious signals spaced 3 MHz apart at levels typically <-80 dBc.
3 At a 50 Hz line frequency, power line or microphonically related spurious signals may be up to $\mathbf{3 d B}$ higher and appear at offsets as high as $\mathbf{1 k H z}$ from the carrier.
4 The 8663A uses a microprocessor level accuracy enhancement routine to achieve $\pm 1 \mathrm{~dB}$ absolute level accuracy and flatness for levels between
 function.
5 Includes flatness, attenuator error, detector error, and measurement uncertainty.
6 In the sweep mode, the normal microprocessor level accuracy enhancement routine is defeated. Level accuracy enhancement can be selected during sweep with a special function, but minimum sweep time is limited to typically $10 \mathbf{~ m s} /$ step.

Output

Range: +16 dBm to -129.9 dBm
(1.41 V to $0.072 \mu \mathrm{~V}$ across 50Ω).

Resolution: 0.1 dB .
Absolute level accuracy ${ }^{4,5}:< \pm 1 \mathrm{~dB},+16 \mathrm{dBm}$ to $-119.9 \mathrm{dBm} ;< \pm 3 \mathrm{~dB},-120 \mathrm{dBm}$ and below.

Flatness ${ }^{4}$: Same as absolute level accuracy.
Flatness in sweep mode, $\mathbf{+ 1 6} \mathbf{d B m}$ to $\mathbf{- 1 1 9 . 9 ~ d B m}{ }^{6}$:
$< \pm 1.1 \mathrm{~dB}, 0.1 \mathrm{MHz}$ to 1280 MHz ;
$< \pm 1.5 \mathrm{~dB}, 0.1 \mathrm{MHz}$ to 2560 MHz .

Supplemental characteristics - output

Maximum displayed output level: +19.9 dBm . Impedance: 50 ohms.
SWR: < 1.5
Level switching time: <60 ms.

Typical absolute level accuracy. 0 dBm output setting.

8663A Specifications

Amplitude modulation

AM depth: 0% to 95%, output level $\leq+10 \mathrm{dBm}$.
AM resolution: 0.1\%.
AM indicator accuracy: $\pm(6 \%$ of setting $+1 \%$ AM), 400 Hz and 1 kHz rates, depth $\leq 90 \%$.
AM bandwidth (1 dB), depth $\leq 90 \%$:
DC to $>1.5 \mathrm{kHz}, 0.15 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{c}}<1 \mathrm{MHz}$;
DC to $>5 \mathrm{kHz}, 1 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{c}} \leq 10 \mathrm{MHz}$;
DC to $>10 \mathrm{kHz}, \leq \mathrm{f}_{\mathrm{c}}>10 \mathrm{MHz}$; for external dc coupling. For external ac coupling or internal modulation, low frequency limit is 20 Hz .
AM distortion for 400 Hz AND $1 \mathbf{k H z}$ rates:
$<2 \%, 0$ to 30% AM;
$<3 \%, 30$ to 70% AM;
$<4 \%, 70$ to 90% AM.
Incidental phase modulation, 30\% AM, 1 kHz rate:
<0.15 radians peak, $0.1 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{c}}<640 \mathrm{MHz}$;
<0.1 radians peak, $640 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{c}}<1280 \mathrm{MHz}$;
<0.33 radians peak, $1280 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{c}}<2560 \mathrm{MHz}$.
Supplemental characteristics - AM
External input impedance: 600 ohms.
External input level required for calibrated operation: 1V peak. Front panel input level annunciator indicates $1 V$ peak $\pm 2 \%$.

Pulse modulation

On/off ratio: $>80 \mathrm{~dB}, 50 \mathrm{MHz}<\mathrm{f}_{\mathrm{c}}<2560 \mathrm{MHz}^{7}$.
Rise and fall time ($10 \%, 90 \%$):
$<250 \mathrm{~ns}, 50 \mathrm{MHz} \mathrm{f} \quad<120 \mathrm{MHz}$; $<780 \mathrm{~ns}, 120 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{c}}<640 \mathrm{MHz}$. $<100 \mathrm{~ns}, \mathrm{f}_{\mathrm{c}} \geq 640 \mathrm{MHz}$.

Pulse repetition frequency (50\% duty cycle) ${ }^{8}$
Internal: 10 Hz to 99.9 kHz .
External: 10 Hz to $2 \mathrm{MHz}, 50 \mathrm{MHz}<\mathrm{f}_{\mathrm{c}}<640 \mathrm{MHz}$; 10 Hz to $5 \mathrm{MHz}, \mathrm{f}_{\mathrm{c}} \geq 640 \mathrm{MHz}$.

Supplemental characteristics pulse modulation

Pulse delay time: <150 ns.
External input impedance: 50Ω, dc coupled.
External input level required: $>2.5 \mathrm{~V}$-on, $<0.5 \mathrm{~V}$-off, not to exceed $\pm 10 \mathrm{~V}$.

7 Pulse modulation is available for carrier frequencies below 50 MHz but is unspecified.
8 For duty cycle other than 50%; minimum repetition frequency $=100 \mathrm{~Hz}$, minimum pulse width $=1 \mu \mathrm{~s}$.

Frequency modulation

FM deviation:

Center frequency $($ MHz $)$	AC mode $(\mathbf{k H z})$	DC mode $(\mathbf{k H z})$
	the smaller of	
$0.1-120$	100 or $f_{\text {mod }} \mathrm{kHz} \times 500$	100
$120-160$	25 or $\mathrm{f}_{\text {mod }} \mathrm{kHz} \times 125$	25
$160-320$	50 or $\mathrm{f}_{\text {mod }} \mathrm{kHz} \times 250$	50
$320-640$	100 or $f_{\text {mod }} \mathrm{kHz} \times 500$	100
$640-1280$	200 or $f_{\text {mod }} \mathrm{kHz} \times 1000$	200
$1280-2560$	400 or $f_{\text {mod }} \mathrm{kHz} \times 2000$	400

FM resolution:

Frequency range	FM deviation resolution	
	$\leq \mathbf{1 0 0} \mathbf{~ k H z}$ dev.	$>\mathbf{> 1 0 0} \mathbf{~ k H z}$ dev.
0.1 to 640 MHz	0.1 kHz	n / a
640 to 1280 MHz	0.2 kHz	1 kHz
$\mathbf{1 2 8 0}$ to 2560 MHz	0.4 kHz	1 kHz

FM indicator accuracy: $\pm(7 \%$ of setting $+10 \mathrm{~Hz})$, rates 50 Hz to 20 kHz .

FM bandwidth ($\mathbf{1} \mathbf{~ d B}$): dc to 100 kHz , dc coupled FM; 20 Hz to 100 kHz , ac coupled FM and internal FM.

FM distortion: $<1.0 \%$ for 400 Hz and 1 kHz rates; $<1.7 \%$ for rates $\leq 20 \mathrm{kHz}$.

Incidental AM, 20 kHz peak deviation, $1 \mathbf{k H z}$ rate: <-72 dBc sidebands, $10 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{c}}<2560 \mathrm{MHz}$.

Supplemental characteristics - FM

Typical center frequency stability in dc mode.

$\boldsymbol{f c}$ (MHz)	Center frequency accuracy	Measured center frequency stability
$0.1-120$	$\pm 10 \mathrm{kHz}$	$\pm 200 \mathrm{~Hz} / \mathrm{hr}$
$120-160$	$\pm 2.5 \mathrm{kHz}$	$\pm 50 \mathrm{~Hz} / \mathrm{hr}$
$160-320$	$\pm 5 \mathrm{kHz}$	$\pm 100 \mathrm{~Hz} / \mathrm{hr}$
$320-640$	$\pm 10 \mathrm{kHz}$	$\pm 200 \mathrm{~Hz} / \mathrm{hr}$
$640-1280$	$\pm 20 \mathrm{kHz}$	$\pm 400 \mathrm{~Hz} / \mathrm{hr}$
$1280-2560$	$\pm 40 \mathrm{kHz}$	$\pm 800 \mathrm{~Hz} / \mathrm{hr}$

External input impedance: 600 ohms.
External input level required for calibrated
operation: 1 V peak. Front panel input level annunciator indicates 1 V peak $\pm 2 \%$.

Auxiliary FM input: Rear panel connector for FM modulation. Operates independently allowing simultaneous FM modulation with two tones. Input impedance: $5.1 \mathrm{k} \Omega ; 4 \mathrm{~V}$ peak yields maximum allowable deviation.

8663A Specifications

Binary phase shift keying ${ }^{9}$

Carrier null, 100 kHz square wave:
$>20 \mathrm{~dB}, 120 \mathrm{MHz}<\mathrm{f}_{\mathrm{c}} \leq 640 \mathrm{MHz}$;
$>17 \mathrm{~dB}, \mathrm{f}_{\mathrm{c}} \geq 640 \mathrm{MHz}$, Option 002, (+15 to $+35{ }^{\circ} \mathrm{C}$).

Supplemental characteristics - BPSK

External input impedance: 50 ohms, dc coupled.

External level required: > 2.5 V-on, <0.5 V-off, not to exceed $\pm 10 \mathrm{~V}$.

Phase modulation (Option 002) ${ }^{9}$

Phase deviation/resolution:

Carrier frequency	Maximum peak phase deviation	Resolution
$0.1-120 \mathrm{MHz}$	100 deg.	1 deg.
$120-160 \mathrm{MHz}$	25 deg.	1 deg.
$160-320 \mathrm{MHz}$	50 deg.	1 deg.
$320-640 \mathrm{MHz}$	100 deg.	1 deg.
$640-1280 \mathrm{MHz}$	200 deg.	2 deg.
$1280-2560 \mathrm{MHz}$	400 deg.	4 deg.

Phase modulation accuracy: $\pm(12 \%$ of setting $+3 \%$ of full scale), for rates given in table below, $\left(+15\right.$ to $+35{ }^{\circ} \mathrm{C}$).

Phase modulation rate table:

Carrier frequency	Rates	
	$\mathbf{5 0} \Omega$	$\mathbf{6 0 0} \Omega$
$0.15-10 \mathrm{MHz}$	10 kHz	10 kHz
$10-50 \mathrm{MHz}$	100 kHz	100 kHz
$50-220 \mathrm{MHz}$	2 MHz	2 MHz
$220-640 \mathrm{MHz}$	5 MHz	2 MHz
$640-2560 \mathrm{MHz}$	10 MHz	2 MHz

[^1]Distortion: <10\% for rates given in table.

Supplemental characteristics phase modulation

External input impedance: $50 \Omega, 600 \Omega$ selected with a special function. AC or dc coupling.

Low frequency ac coupling limit: $200 \mathrm{~Hz}, 50 \Omega$; $20 \mathrm{~Hz}, 600 \Omega$.

External level required for calibrated operation: 50 ohm input: +10 dBm from source with SWR<1.21:1; 600 ohm input: 1 V peak. Front panel annunciator indicates calibrated level $\pm 5 \%$ for rates $\leq 100 \mathrm{kHz}$.

Internal modulation synthesizer

Frequency range: 10 Hz to 99.9 kHz . Frequency resolution: 3 digits.
Frequency accuracy: Same as reference oscillator.

Supplemental characteristics -

 modulation synthesizerOutput level: 1 V peak into 600Ω, available on rear panel.
Output impedance: 600Ω.
Flatness: $< \pm 1 \%$ referenced to 1 kHz .
Distortion: <1\%.

Digital sweep

Digitally stepped sweep is available for the carrier frequency and the internal modulation synthesizer frequency.

Sweep functions

Start-stop sweep: sweeps between two selected frequencies.

Span sweep: symmetrical sweep about center frequency selected.

Sweep width: determined by frequency resolution and frequency range of instrument; i.e., 0.1 Hz to 1280 MHz .

Step size: choice of 100 or 1000 points per sweep, or settable to any value within the frequency resolution of the instrument.

Sweep speed: Carrier frequency: $0.5 \mathrm{~ms}, 1 \mathrm{~ms}$, $2 \mathrm{~ms}, 10 \mathrm{~ms}$ and 100 ms per step. (0.5 ms is nominal value which will vary depending on use of markers or log sweep.) Modulation synthesizer: 2 ms per step is the shortest available sweep time.

Log sweep: two choices available in increasing steps of 10% or 1% of the last frequency.

Frequency markers: five digital markers.
Resolution and accuracy same as RF output.

Intensity markers: ${ }^{10} \mathrm{Z}$ axis modulation (-5 V pulse) of CRT display coordinated with frequency markers, available at rear panel.

Amplitude markers: ${ }^{10}$ rear panel signal (5 kHz triangle wave) can be applied to AM input connector to provide adjustable amplitude markers.
Marker sweep: ${ }^{10}$ start/stop sweeps between any two frequency markers can be selected.

Display blanking: ${ }^{10} 250 \mu$ s positive pulse (TTL levels) available at rear panel for display blanking during frequency switching.

Sweep output: 0 to 10 V nominal stepped ramp. Zero at start of sweep; approximately +10 V at end of sweep regardless of sweep width. 10,000 points maximum.

Sweep modes

Auto: sweep repeats automatically.

Single: single sweep activated by front panel key board.

Manual: sweep controlled by front panel knob.

[^2]
8663A Specifications

Remote programming

Interface: GPIB.
Functions controlled: All functions controlled from the front panel with the exception of the line switch are programmable with the same accuracy and resolution as in manual mode.
GPIB capability: as defined in IEEE-488-1978 is: SH1, AH1, T6, TE0, L3, LE0, SR1, RL1, PP0, DC1, DT1, C0, E1.

Rear panel auxiliary control connector

Functions controlled

Step up/step down: Same as increment keys on keyboard.
Stop sweep: Sets sweep in manual mode.
Continue sweep: Puts sweep in auto mode.
Single sweep: Initiates single sweep.
Sequence: Same as sequence key on keyboard.
Input required: Contact closure to ground or $5 \mu \mathrm{~s}$ negative true TTL pulse. Internally installed jumper determines mode.
Outputs: 5μ s negative true TTL pulse output under following conditions: 1) Change in signal parameter, for example frequency, amplitude, modulation; 2) End of sweep.
Frequency hop: A special function reconfigures the auxiliary connector allowing the generator to hop among frequencies set in storage registers 1 to 6 . A 5μ s negative true TTL pulse initiates hop.
Connector: 14 pin.

General

Operating temperature range: 0° to $+55^{\circ} \mathrm{C}$.
Leakage: Meets radiated and conducted limits of MILSTD461A methods RE02 and CE03 as well as BVDE 0871.
Power requirements: $115(90-126) \mathrm{V}$ or 230 (198-252) V; 48 to $66 \mathrm{~Hz} ; 450$ VA maximum.
Weight: Net 33.8 kg (74 lbs); shipping 40 kg (88 lbs).
Dimensions: $178 \mathrm{~mm}[\mathrm{H}] \times 425 \mathrm{~mm}[\mathrm{~W}] \times 642 \mathrm{~mm}[\mathrm{D}]$; (7 " $\times 16.75 " \times 25.3 "$).
Note: Depth includes front panel depth of $45 \mathrm{~mm}(1.75$ ").
System II module size: $7 \mathrm{H} \times 1 \mathrm{MW} \times 23 \mathrm{D}$.

[^3]
Complementary equipment

11714A service support kit. (Required for service).
11729C microwave down converter.
3048A phase noise measurement system.
9211-2662 transit case.
1490-0913 caster kit for transit case.

Ordering information

8663A synthesized signal generator

Options: 001 rear panel RF output and modulation inputs
002 phase modulation
003 specified SSB phase noise for rear panel 640 MHz output
700 "MATE" language compatibility
907 front handle kit
908 rack flange kit
909 rack flange kit and front handle kit 910 extra manual

11714A service support kit

Dimensions in millimeters and (inches).

[^0]: 1 Specifications extend up to and including $\mathbf{1 1 9 . 9 9 9 9 9 9 9} \mathbf{~ M H z}$.
 2 Specifications extend up to and including 0.1 Hz less than the starting frequency of the next band.
 3 Specifications extend up to and including $1279.9999998 \mathbf{M H z}$.
 4 Specifications extend up to and including 2559.9999996 MHz .
 5 Due to bandwidth switching of the automatic internal leveling loop, brief level inaccuracies (i.e., typically $<30 \mathrm{~ms}$) may occur when switching through exactly 150 kHz and exactly $1 \mathbf{~ M H z}$ RF output frequencies.

[^1]: 9 BPSK is standard for carrier frequencies up to 640 MHz . With Option 002, BPSK is available at all carrier frequencies. For carrier frequencies up to $\mathbf{6 4 0} \mathbf{~ M H z}$, the standard BPSK is available, at rates above 100 kHz but is unspecified. BPSK can not be simultaneously selected with Option 002 phase modulation at 640 MHz and above or with pulse modulation.

[^2]: 10 Not available for modulation synthesizer sweep.

[^3]: Specifications describe the instrument's warranted performance and apply after a 30-minute warm-up.

 Supplemental characteristics (shown in italics) are intended to provide information useful in applying the instrument by giving typical, but non-warranted performance parameters.

